x^2-7=23-10x^2

Simple and best practice solution for x^2-7=23-10x^2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x^2-7=23-10x^2 equation:



x^2-7=23-10x^2
We move all terms to the left:
x^2-7-(23-10x^2)=0
We get rid of parentheses
x^2+10x^2-23-7=0
We add all the numbers together, and all the variables
11x^2-30=0
a = 11; b = 0; c = -30;
Δ = b2-4ac
Δ = 02-4·11·(-30)
Δ = 1320
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1320}=\sqrt{4*330}=\sqrt{4}*\sqrt{330}=2\sqrt{330}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{330}}{2*11}=\frac{0-2\sqrt{330}}{22} =-\frac{2\sqrt{330}}{22} =-\frac{\sqrt{330}}{11} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{330}}{2*11}=\frac{0+2\sqrt{330}}{22} =\frac{2\sqrt{330}}{22} =\frac{\sqrt{330}}{11} $

See similar equations:

| 2x^2+9=29 | | 60k=50k+40 | | x2+11=60 | | 3(4-2a)=5(a+3) | | -9.1=s/7.12 | | -9.1=s/7.128 | | 2(x-6)+2=4(x+4)-4 | | 7x-20=3x-11 | | 64n2–36=0 | | 3/4x-1/2=5/8 | | 50=-10t-4.9t^2 | | 2x+11-7x=14x+9x-8 | | 14c+1-4c=39c-26 | | t2=82 | | I(9-12)+4x=23 | | d2–63=58 | | 6h2–98=-62 | | -4(2x-9)=6-(x-7) | | 65=((x-3)x)/2 | | 8z2–32=0 | | -0.96j=0.72 | | u2+24=40 | | 8n2=72 | | 8k+6.5=k+15 | | 6x(x−1)=40−5x | | d2–36=0 | | 6y^2-y-51=0 | | 2+1.25s=10-2.75s | | x+(x*0.2)=6.75 | | 49r2=100 | | 3y^2-y-51=0 | | X+2x+x-6=38 |

Equations solver categories